International Journal of Advanced Research in Biological Sciences ISSN: 2348-8069 www.ijarbs.com

DOI: 10.22192/ijarbs

Coden: IJARQG(USA)

Volume 7, Issue 4 -2020

Research Article

2348-8069

DOI: http://dx.doi.org/10.22192/ijarbs.2020.07.04.016

Biological spectrum with some other ecological attributes of the flora and vegetation of the Salher fort of Maharashtra, India.

D.G. Jadhav

Dept. of Botany M.G.V's, Smt. Pushpatai Hiray Arts, Science and Commerce Mahila Mahavidyalaya, Malegaon Camp Dist. Nashik, Maharashtra - 423 105 E-mail: *dgjadhav2009@gmail.com*

Abstract

On the basis of current available information on the flora and vegetation of the Salher fort of Maharashtra, India, spectra on life form and some other ecological attributes were analyzed and reviewed in different sub-ecosystem of the investigated area. In this region, the vegetation expression was predominantly evergreen, although the tree flora has considerable elements of deciduous species. The floristic list of Salher fort of Maharashtra, India consists of 165 species belonging to 53 families, 46 dicotyledons (dicots) and 7 monocotyledons (monocots). Fabaceae was the dominating family in dicotyledons and Poaceae in Monocotyledons. According to the Raunkiaerian life form Phanerophytes (40.61%), Therophytes (48.48%), Hemicryptophytes (6.67%), Chamaephytes (3.03%) and Cryptophytes (1.21%) contribute in the establishment of vegetation structure in the study area. The leaf size spectra analyzed revealed that, microphylls (34.55%) followed by mesophylls (22.42%), nanophylls (16.36%), macrophylls (15.15%) leptophylls (9.10%), and megaphylls (2.42%) that construct the vegetation belt of the area. The biological spectrum of the high altitude was characterized by phanerophytes mainly representing nanophanerophytic followed by mesophanerophytic, megaphanerophytic and microphanerophytic species. The phanerophytes appears to be due to dry climate and high anthropogenic disturbance in the region.

Keywords: Biological spectrum, Salher fort, Leaf spectra, Life forms, Ecological attributes.

Introduction

The life form is an important physiognomic attributes that have been widely used in vegetation studies and also it indicates micro and macroclimate as well as human disturbance of a particular area. Life form in a community is generally defined as the sum of adaptation of plant to climate. Different systems have been revised by many ecologists for the description and classification of plant life forms. However, the system of Raunkiaer is the most and worldwide accepted, which is based upon the principle of position and degree of protection of the buds during the adverse climatic conditions. The study the floristic composition and life forms of different plants is important to find out phytoclimatic zones of the area.

According to this system, plant species can be grouped into five main classes: Phanerophytes, Chamaephytes, Hemicryptophytes, Cryptophytes and Therophytes. It is important to study the floristic composition and life forms of different plants to find out phytoclimatic zones of the area. In India, several workers have studied life forms and biological spectrum of different regions (Gupta and Kachroo, 1981;Ghildiyal and Srivastava, 1990; Nautiyal et al. 2001; Desai and Ant, 2012; Sharma et al. 2014) . In Maharashtra, only few workers have studied life forms and biological spectrum of different regions (Bharucha, et al, 1941; Cherion et al. 1972; Patil D.A. 1990; Jadhav J.T. 2002; Jadhav D.G. 2014). Besides, no work on life forms has so far been carried out in Nasik district, Maharashtra.

Study area:

The Nashik district is located between latitude 19⁰ 35' and 20° 50' and longitudes 73° 35' and extend over the area of 15,587 sq. km. It is bounded on the north-west by the Dangs and Surat district of Gujarat state on the north by Dhule district, on the east by Jalgaon and Aurangabad district, on the south by Ahmednagar and south-west by Thane district of Maharashtra state.Most of the mountains and forts in this tract is located on extreme part of Western Ghats. The hill ranges have direction either West-East or South-West or North-West except that of Sahyadris. The elevation varies from 600 to 1400 meters above Mean Sea Level. The hill slopes are usually steep and in many places precipitous. Salher is a place located near Waghamba in Satana tehsil in Nashik district. It is the site of the highest fort in the Sahyadri forts and the second highest peak at 1,567 metres (5,141 ft) after Kalsubai in Maharashtra and 32nd highest peak in Western Ghats. This was one of the celebrated forts of the Maratha Empire. The money acquired after raiding Surat was brought to this fort first on its way to the Maratha capital forts.

According legend, Lord Parshuram did to a his Tapascharya at Salher Fort. After winning the earth and giving it as donation, he made land for himself to live in, by pushing the sea back with his arrows, right from this place. The twin fort Salota (4986 feet) is very near to Salher. An ancient and historically significant place like this is also famous for its battles during the reign of Chatrapati Shivaji Maharaj. Salher under Shivaji maharaj Fort was in 1671. The Mughals attacked the fort in 1672. Almost one lakh soldiers fought in this war. Many soldiers died in this battle but finally Shivaji Maharaj won the battle of Salher. Of all the face to face battles between the Mughals and Shivaji Maharaj's troops, the battle of Salher takes first place. Such a big battle was not won before. The bravery and strategy used by the Maratha troops in the battle spread far and wide and increased

Shivaji Maharaj's fame further. After winning Salher, the Marathas also captured Mulher and established their reign over the Baglan region. In the 18th century the Peshwas occupied this fort and later by the British. The Marathas defeated the Mughals at the Battle of Salher in 1672.

Materials and Methods

The results embodied in this work are based on collection from 2007 to 2010 through well-planned explorationon. Numbers of extensive explorations of 3-5 days duration were made on the Salher fort. More emphasis has given on intensive rather than extensive explorations. Sampling was done to prepare a complete herbarium for future reference. All the collected specimens have been processed for herbarium by dry method as per the routine herbarium techniques recommended by Santapau (1955) and Jain and Rao (1976). Specimens were critically examined in the laboratory with the help of relevant floras and available revisions, monographs and other related literature. All the plant species were classified on the basis of life forms as defined by Raunkier to determine the phytoclimate of the area (Table 2). In view of the above applications for Raunkiaerian concepts, the presentation endeavour was initiated with an aim to (1) ascertain variation of life forms in different plant communities of different climatic zones and (2) elucidate the relationship between vegetation and an elevational role of anthropogenic activities and environmental factors on the observed trends.

Biological spectrum of the flora based on the life form was prepared by following Raunkiar (1934), life form classes as follows:

Therophytes: Annual seed bearing plants which complete their life cycle in one year and over winter; the unfavourable season by means of seeds or spores.

Geophytes: Perennating buds located below the surface of soil including plants with deep rhizomes, bulbs, tubers and corms, etc.

Hydrophytes: Submerged hydrophytes are those rooted in the muddy substratum. The above ground or upper parts die at the end of growing season.

Hemicrytophytes: Herbaceous perennial in which aerial portion of plant dies at the end of growing season, leaving a perennating bud at or just beneath the ground surface.

Chamaeophytes: Perennating buds located close to the ground surface (below the height of 25 cm). They include herbaceous, low woody trailing, low stem succulents and cushion plants.

Phanerophytes: They are shrubby and tree species whose perennating buds are borne on aerial shoot reaching a height of at least 25 cm or more above the ground surface (Table 1).

After having assigned a life form to all the plants Raunkiarian spectra was calculated as follows:

Number of species falling in particular life form class	
Biological Spectrum =	— x 100

Total number of all the species for the community / stand

Leaf size classes: The leaf size knowledge helps in understanding physiological process of plants and plant communities and it is useful in classifying the associations. Plants were classified into Raunkiarian leaf sizes (Table 1).

Raunkiaer spectrum was calculated as follows:

Leaf Size Spectra =
$$\frac{\text{Number of species falling in particular leaf size class}}{\text{Total number of all the species for the community / stand}} x 100$$

Table 1: Showing Raunkiarian Leaf size and phanerophyte classes of the flora and vegetation.

Leaf Size Classes		Phanerophytes		
Туре	Leaf area (Sq. mm.)	Туре	Length (m)	
Leptophyll	Up to 25	Megaphanerophytes	30 or above	
Nanophyll	25 - 225	Mesophanerophytes	7.5 to 30	
Microphyll	225 to 2025	Nanophanerophytes	0.25 to 7.5	
Mesophyll	2025 to 18225			
Macroph yll	18225 to 164025			
Megaphyll	Larger than 164025			

Results

The floristic list of Salher fort of Maharashtra, India consists of 165 species belonging to 53 families, 46 dicotyledons (dicots), 7 monocotyledons (monocots). Fabaceae (25 Spp.) and Asteraceae (11 spp.) was the dominating familes. These were followed by Euphorbiaceae (9 spp.), Rubiaceae (6 spp.), Lamiaceae (6 spp.), Lythraceae (5 spp.) and Acanthaceae (5 spp.) in dicotyledons and Poaceae (12 spp.) and Cyperaceae (6 spp.) in Monocotyledons in the study area. The remaining families had one or two species. According to the Raunkiaerian life form Therophytes (48.48%), Phanerophytes (40.61%), Hemicryptophytes (6.67%), Chamaephytes (3.03%) and Cryptophytes (1.21%) contribute in the establishment of vegetation structure

in the study area. In leaf size spectra, the analysis revealed that microphylls (34.55%) followed by mesophylls (22.42%),nanophylls (16.36%),macrophylls (15.15%) leptophylls (9.10%), and megaphylls (2.42%) construct the vegetation belt of the area respectively (Tables 3). The biological spectrum of the high altitude was characterized by phanerophytes mainly representing nanophanerophytic followed by mesophanerophytic, megaphanerophytic and microphanerophytic species. The phanerophytes appears to be due to dry climate and high anthropogenic disturbance in the region. The comparison with Raunkiaer's normal spectrum depicts Thero-phanerophytic type of phytoclimate. This indicates dry climate and high anthropogenic disturbance in the region.

Sr. No.	Species	Habit	Life Form	Leaf Spectra
1	RANANCULACEAE			
1	Clematis gouriana Roxb. ex. DC.	С	PH	Lepto
2	DILLENIACEAE			
2	Dillenia pentagyna Roxb.	Т	PH	Meso
3	MENISPERMACEAE			
3	Cyclea peltata (Lam.) Hook. f.	С	PH	Micro
4	Tinospora cordifolia Willd.	С	PH	Micro
4	PAPAVERACEAE			
5	Cardamine trichocarpa Hochst.	H	TH	Nano
5	FLACOURTIACEAE			
6	Casearia graveolens Dalz.	Т	PH	Micro
6	POLYGALACEAE			
7	Polygala erioptera DC.	Н	TH	Nano
7	PORTULACACEAE			
8	Portulaca tuberosa Roxb.	Н	TH	Nano
8	MALVACEAE			
9	Kydea calycina Roxb.	Т	PH	Micro
10	Pavonia zeylanica L.	S	PH	Nano
11	Sida spinosa L.	Н	TH	Nano
12	Urena lobata L.	S	PH	Micro
9	BONBACACEAE			
13	Bombax ceiba L.	Т	PH	Meso
10	STERCULIACEAE			
14	Firmiana colorata Roxb.	Т	PH	Meso
15	Sterculia guttata Roxb.	Т	PH	Meso
11	TILIACEAE			
16	Grewia serrulata DC.	Т	PH	Meso
17	Triumfetta pilosa Roth.	Н	HM	Meso
12	LINACEAE			
18	Linum mysurense Heyne ex Bth.	Н	TH	Micro
13	MALPIGHIACEAE			
19	Aspidopteris cordata Heyne.	С	PH	Meso
14	ZYGOPHYLLACEAE			
20	Fagonia schweinfurthii Hadidi	Н	TH	Lepto
15	BALSAMINACEAE			-
21	Impatiens acaulis Arn.	Н	TH	Nano
22	Impatiens balsamina L.	Н	TH	Micro
16	CELASTRACEAE			
23	Celastrus paniculatus Willd.	С	PH	Micro
17	VITACEAE			
24	Ampelocissus latifolia Roxb.	С	PH	Macro
25	<i>Cissus pallida</i> (Wight & Arn.) Planch.	S	PH	Macro
18	LEEACEAE			
26	Leea macrophylla Roxb.	Н	TH	Mega
19	ANACARDIACEAE			
27	Rhus mysorensis G. Don,	S	PH	Meso
28	Spondias pinnata (L.f.)	T	PH	Meso

Table 2. Showing Floristic list, habit, life forms and leaf size spectra of the flora and vegetation of. Salher fort.

20 FABACEAE 29 Alysicarpus bupleuriformis (L.) DC. Η CH Micro 30 Alysicarpus longifolius Wight & Arn. Η TH Micro 31 Alysicarpus tetragonolobus Edgew. Η TH Nano 32 *Butea superba* Roxb. С PH Micro 33 Canavalia africana Dunn. С PH Meso С 34 *Clitoria ternatea* L. HM Micro 35 Crotalaria calycina Shrank, Η Micro TH 36 Crotalaria mysorensis Roth. Η TH Micro 37 Crotalaria retusa L. Η TH Meso S 38 Dalbergia horrida Dennst. PH Lepto С 39 Derris scandens (Roxb.) PH Nano 40 Desmodium procumbens (Mill.) Hutch. Η TH Nano S 41 Desmodium velutinum (Willd.) DC. PH Micro S 42 *Flemingia strobilifera* (L.) Ait. PH Micro 43 *Geissaspis cristata* Wight & Arn. Η TH Nano 44 Indigofera hendecaphylla Jacq. Η TH Nano С 45 *Macrotyloma uniflorum* Verdc. PH Micro 46 *Mucuna pruriens* (L.) DC. S PH Meso 47 Pycnospora lutescens (Poir.) Schindl. Η TH Lepto 48 Rhynchosia rothii Bth. S PH Nano 49 Smithia salsuginea Hance. Η TH Lepto 50 Smithia sensitiva Ait. Η TH Micro 51 Taverniera cuneifolia (Roth.) Arn. Η TH Micro 52 Tephrosia villosa (L.) Pers. Η TH Lepto 53 Vigna khandalensis Sant. S PH Meso 21 CAESALPINIACEAE Т 54 Bauhinia malabarica Roxb. PH Micro 55 *Caesalpinia bunduc* (L.) Roxb. S PH Lepto Т PH 56 *Cassia fistula* L. Nano Cassia mimosoides L. Η TH 57 Lepto 22 MIMOSACEAE Т Acacia nilotica (L.) Willd. PH Lepto 58 59 Т PH *Prosopis cineraria* (L.) Druce, Lepto Т 60 Samania saman (Jacq.) Merr. PH Lepto 23 COMBRETACEAE Terminalia bellirica (Gaertn.) Roxb. Т PH 61 Macro Т 62 Terminalia chebula Retz. PH Mega 24 LITHRACEAE Lagerstroemia parviflora Roxb. Т PH Macro 63 64 *Rotala densiflora* Roth. Ex R. & S. Η TH Nano 65 Rotala indica (Willd.) Koehne. Η TH Nano Rotala rotundifolia Buch.-Ham. Η Lepto 66 CH 67 *Woodfordia fruticosa* (L.) Kurz S PH Nano 25 BEGONIACEAE 68 Begonia crenata Dryand. Η TH Meso 69 *Begonia picta* J.E. Sm. Η TH Macro 26 APIACEAE 70 Ammi majus L. Η TH Nano 71 Pinda concanensis Dalz. Η TH Nano

Int. J. Adv. Res. Biol. Sci. (2020). 7(4): 146-155

27	RUBIACEAE			
72	Gardenia latifolia Soland.	Т	PH	Macro
73	Hymenodityon orixense (Roth.) Mabb.	Т	PH	Macro
74	Meyna laxiflora Robyns.	Т	PH	Meso
75	Neanotis lancifolia Hook. f.	Н	TH	Micro
76	Pavetta crassicaulis Bremek	S	TH	Macro
77	Tamilnadia uliginosa (Retz.) Tirv. & Sastre.	Т	PH	Macro
28	ASTERACEAE			
78	Blumea mollis D.Don.	Н	TH	Micro
79	Caesullia axillaris Roxb.	Н	СН	Micro
80	Conyza sumatrensis Retz.	Н	TH	Micro
81	<i>Cyathocline purpurea</i> Buch-Ham.	Н	TH	Nano
82	Gnaphalium polycaulon Pers.	Н	TH	Nano
83	Launaea intybacea (Jacq) Beauv.	Н	TH	Nano
84	Phyllocephalum scabridum DC.	Н	TH	Meso
85	Senecio bombayensis Balakr.	H	TH	Micro
86	Siegesbeckia orientalis L.	H	TH	Meso
87	Tricholepis radicans (Roxb.) DC.	H	TH	Lepto
88	Zinnia peruviana (L.) Syst.	H	TH	Micro
29	MYRSINACEAE	**		
89	Embelia basaal (R. & S.) A. DC.	S	TH	Nano
0 0	SAPOTACEAE	5	111	1 tullo
90	Manikara hexandra (Roxb.) Dub.	Т	PH	Meso
91	Mimusops elengi L.	T	PH	Macro
51	ASCLEPIADACEAE	1	111	Widero
92	Ceropegia hirsuta Wight.	Н	PH	Micro
93	Ceropegia sahyadrica Ansari & Kulk.	H	TH	Meso
94	Leptadenia reticulata (Retz.) Wight & Arn.	S	PH	Meso
95	<i>Tylophora dalzelii</i> Hook. f.	C	PH	Macro
93 32	CONVOLVULACEAE	C	111	Widero
96	Convolvulus arvensis L.	Н	HM	Nano
90	Ipomoea companulata L.	S	PH	Macro
98		H	TH	Micro
98	Ipomoea eriocarpa R. Br.	S	CH	
99 13	Ipomoea mauritiana Jacq. SOLANACEAE	3	СП	Macro
100	Solanum virginianum L.	Н	СН	Micro
100	Withania somnifera (L.) Dunal.	H	TH	Macro
34	SCROPHULARIACEAE	11	111	Widero
102	Sopubia delphinifolia (L.) G. Don.	Н	TH	Nano
102	Striga densiflora (Bth.) Bth. Comp.	H	TH	Nano
35	MATRYNIACEAE	11	111	Inallo
104	Martynia annua L.	Н	TH	Mega
6	ACANTHACEAE	11	111	Iviega
105	Carvia callosa (Wall.) Bremek.	S	PH	Meso
105	Haplonthodes tentaculata R.B. Mujumdar.	H	TH	Meso
100	Haptoninoaes tentaculata K.B. Mujundar. Hygrophylla serpyllum (Nees) T. And.	H	TH	Nano
107	Lepidagathis cuspidata Nees.	н S	PH	Micro
		S S		
109	<i>Thelepaepale ixiocephala</i> Bremek.	3	PH	Meso
37	VERBENACEAE	T		λ.α
110	<i>Gmelina arborea</i> Roxb.	Т	PH	Mega
111	Vitex negundo L.	S	PH	Meso

Int. J. Adv. Res. Biol. Sci. (2020). 7(4): 146-155

38	LAMIACEAE			
112	Anisochilus carnosus (L.) Wall.	Н	TH	Meso
112	Anisomeles malabarica R. Br. ex Sims.	S	PH	Meso
113	Colebrookea oppositifolia Sm. Exot.	S	PH	Macro
115	Hyptis suaveolens (L.) Poit.	S	PH	Macro
115	Nepeta hindostana Haines.	H	TH	Meso
117	Orthrosiphon pallidus Royle ex Bth.	H	TH	Micro
39	AMARANTHACEAE		111	Where
118	Alternanthera pungens Kunth.	Н	TH	Micro
110	Alternanthera sessilis (L.) R. Br.	H	TH	Micro
40	POLYGONACEAE			1011010
120	Polygonum plebium R. Br.	Н	TH	Micro
41	ELAEAGNACEAE			
121	Elaeagnus conferta Roxb.	S	PH	Micro
42	LORANTHACEAE			
122	Viscum articulatum Burm. f.	S	PH	Micro
43	EUPHORBIACEAE			
123	Acalypha ciliata Forssk.	Н	TH	Micro
123	Baliospermum montanum MuellArg.	S	PH	Micro
121	Bridelia retusa (L.) Spreng.	S	PH	Meso
125	Euphorbia fusiformis BuchHam.	H	HM	Meso
120	Glochidion ellipticum Wight.	T	PH	Macro
127	Homonoia riparia Lour.	S	PH	Micro
120	Mallotus philippensis (Lam.) MuellArg.	T	PH	Macro
130	Phyllanthus urinaria L.	H	TH	Lepto
130	Trewia polycarpa Bth.	T	PH	Macro
44	URTICACEAE			
132	Boehmeria macrophylla Hornem.	S	PH	Macro
133	Gigardinia diversifolia (Link) Friis.	H	HM	Macro
133	Laportea interrupta (L.) Chew.	H	TH	Macro
45	MORACEAE			
135	Ficus amplissima J. E. Sm.	Т	PH	Macro
136	Streblus asper Lour.	T	PH	Meso
46	CERATOPHYLLACEAE			11050
137	Ceratophyllum demersum L.	Н	CR	Lepto
47	ORCHIDACEAE			Lepto
138	Dendrobium aqueum Lindl.	Н	TH	Meso
130	Dendrobium barbatum Lindl.	H	TH	Macro
140	Habenaria marginata Coleb.	H	TH	Meso
48	TACCACEAE			112050
141	Tacca leontopetaloides (L.) O. Ktze.	Н	HM	Meso
49	LILIACEAE	**		112050
142	Drimia indica (Roxb.) Jessop.	Н	TH	Meso
143	Gloriosa superba L.	H	HM	Meso
144	Iphigenia indica (L.) A. Gray	H	TH	Micro
50	COMMELINACEAE			1.1010
145	Commelina paleata Hassk.	Н	TH	Micro
145	Murdannia nudiflora (L.) Brenan.	H	TH	Nano
51	ARACEAE			1,00110
147	Arisaema tortuosum (Wall.) Schott.	Н	TH	Micro

52	CYPERACEAE			
148	Cyperus alutatus Kern.	Н	TH	Micro
149	Cyperus nutans Kern.	Н	HM	Micro
150	Fimbristylis complanata (Retz.) Link.	Н	HM	Micro
151	Juncellus laevigatis (L.) C.B.CI.	Н	CR	Micro
152	Kyllinga brevifolia Rottb.	Н	TH	Micro
153	Rhynchospora wightiana (Nees) Steud.	Н	TH	Micro
53	POACEAE			
154	Anthraxon lanceolatus Hochst.	Н	TH	Meso
155	Arundinella metzii Hochst.	Н	TH	Micro
156	Coix gigantea Koen.	Н	TH	Meso
157	Dichanthium foveolatum (Del.) Roberty.	Н	TH	Micro
158	Dinebra retroflexa (Vahl.) Panz.	Н	TH	Micro
159	Eragrostiella bifaria (Vahl.) Bor.	Н	HM	Micro
160	Eragrostis viscosa (Retz.) Trin.	Н	TH	Micro
161	Ischaemum rugosum Salisb.	Н	TH	Macro
162	Paspalidium flavidum (Retz.) A. Camus.	Н	HM	Micro
163	Themeda quadrivalvis (L.) O. Ktze.	Н	TH	Micro
164	Triplopogon ramosissimus Bor.	Н	TH	Micro
165	Urochloa panicoides P. Beauv.	Н	TH	Meso

H = Herb; C = Climber; S = Shrub; T = Tree; : PH =Phanerophytes; CH = Chamaephytes; HM = Hemicryptophytes; CR = Cryptophytes; TH = Therophytes; Le = Leptophyll; Na= Nanophyll; Mi=Microphyll; Me= Mesophyll; Ma=Macrophyll and Meg= Megaphyll.

Table 3. Showing number and percentage of life forms and leaf size spectra of Salher fort.

 Number in percentage (in parenthesis).

Life Form		Leaf Spectra		
Phanerophytes	67 (40.61%)	Leptophyll	15 (9.10%)	
Chamaephytes	5 (3.03%)	Nanophyll	27 (16.36%)	
Hemicryptophytes	11(6.67%)	Microphyll	57 (34.55%)	
Cryptophytes/Geophytes	2 (1.21%)	Mesophyll	37 (22.42)	
Therophytes	00 (40 400/)	Macrophyll	25 (15.15%)	
	80 (48.48%)	Megaphyll	4 (2.42%)	

Discussion

Biological spectra are useful in comparing geographically widely separated plant communities and these physiognomic features of the ecosystem are regarded as indicators of biotic interaction, climate and habitat deterioration. According to Raunkiaer (1934), the climate of a region is characterized by life form, while the biological spectrum of the region exceeds the percentage of the same life form. However, due to biological disturbance, the proportion of life forms may be altered. Biological spectrum may be materially changed due to introduction of therophytes like annual weeds, biotic influences like grazing, deforestation and trampling, etc. They have been widely used in understanding the flora and

community/ vegetation structure in relation to prevailing environmental conditions. The overall vegetation of the study area is dominated by therophytes phanerophytes, followed by hemicryptophytes, chaemophytes and geophytes. The predominance of therophytes indicates a disturbed environmental condition. Anthropogenic activities including overgrazing, overharvesting and developmental form reduces the macro element of the vegetation. The same is true in this study as macro elements such as trees have been removed for earning livelihood, terrace cultivation and as a fuel wood source. This facilitates the dominance of other life form classes. The biological spectrum obtained in the present study reflects the existing environmental conditions.

Raunkiaerian life form spectra failed to explain the numerical status of plants in the field, whereas quantitative characters such as density, frequency and canopy cover are more useful parameters in depicting the existing quantitative vegetation structure and related climatic conditions. Leaf size spectra indicated that micro-mesophyllous species were dominating the area. It was observed that plants suffer from adverse conditions such as poor soil development and strong winds. The present study shows that leptophylls were high at the foot hills, while microphylls and nanophylls were present in high altitudes. Species with large leaves occur in warmer climates while smaller leaves are characteristic of dry climates and degraded habitats. The size of leaves alone could not be used to identify specific leaf zone or climates. Other features of plants such as habit and root system might also play important role.

Conclusion

The phyto-spectrum of the Salher fort shows variation from the normal biological spectrum of Raunkiaer (1934). The higher percentage of therophyte is recorded in the study area because of the general terrain of the district is typical of the Deccan plateau. Therophytes were found to be more adaptive and survive in adverse season. The dominance of therophytes indicates the biotic interference includes deforestation, intensive utilization of land for cultivation, over grazing, increase in human habitation while phanerophytes provide good evidence that their abundance is fact of an expression of monsoon climate.

Comparison of the percentage of the life form classes of the Salher fort with Raunkiaer normal spectrum indicates that Therophytes is the largest life form class and their percentage is more than 3 times higher than (48.48%) that of the normal biological spectrum (14%). The Phanerophytes forms the second highest class with (40.61%), which is somewhat equal to that of the normal spectrum. The leaf size spectra analyzed revealed that, microphylls (34.55%) followed by mesophylls (22.42%),nanophylls (16.36%),macrophylls (15.15%) leptophylls (9.10%), and megaphylls (2.42%) that construct the vegetation belt of the area (Table 3). Thus, the area has a Therophanerophytic type of phytoclimate, which indicate hot and dry climate. Therophytes (annuals) are drought evaders in the sense that the whole plant is shed during the unfavourable conditions. It clearly indicates that the anthropogenic and natural factors are

operating together and reducing the chances of formation of new and original life from vegetation structure.

Acknowledgments

The authors are highly thankful to Principal Dr. Ujjwala S. Deore, Smt. Pushpatai Hiray Arts, Science and Commerce Mahila Mahavidyalaya, Malegaon Camp for providing their full support and library facility for the present study.

References

- 1. Agarwal, S.K.(1974), The Biological spectrum of the flora of Gogunda and Prasad (Udaipur-Rajasthan). *J Biol. Sci.* 17: 67-71.
- 2. Bharucha, F.R. and D.B. Ferreira (1941), The biological spectra of the Matheran and Mahabaleshwar Flora. *J. Indian Bot. Soc.* 20: 195-211.
- 3. Caines S.A. (1950), Life forms of Phytoclimate, *Botanical Review* 16: 1-32.
- Cherian, P. J. & R. D. Pataskar (1972), Studies on the vegetation of Surgana- Harsul ranges of Sahyadris, Nashik District, Maharashtra, *Bull. Bot. Surv. India*, 11: 381-397.
- 5. Desai R.K. and H.N. Ant. (2012), Life Forms and Biological Spectrum of the Flora of Vadali Range Forest, *Life Science Leaflets* 4 : 60-63.
- 6. Ghildiyal J.C. and Srivastava M.M. (1990), *Life-forms and biological spectrum of a tropical freshwater swamp forest at Rishikesh (Dehradun) Indian* Journal of Forestry, 13(2), 132-148.
- 7. Gupta, V. C. and P. Kachroo (1981), Relation between photosynthetic structure and standing biomass of meadowland communities of Yusmarg in Kashmir Himalayas, 1981.
- 8. Jadhav, J.T. (2002), Phytosociological studies of the flora of Tryambakeshwar and Vani (Saptashringi) Nashik District. Ph.D. thesis, North Maharashtra University.
- 9. Jadhav, D.G. and Ahire D.U. (2014), *Life forms* and Biological Spectrum of Taharabad Forest of Nashik District, Maharashtra, India, Journal of Periodic Research, Vol. II, Issue IV, 52-58.
- 10. Jain, S.K. & R.R. Rao. (1977), *A handbook of field and Herbarium method*. Today & Tomorrow's Printers and publishers.
- 11. Kambhar S.V. and K. Kotresha (2012), Life Forms and Biological Spectrum of a Dry Deciduous Forest in Gadag District, Karnataka, India. *Research and Review: A Journal of Botany*, Vol. I, Issue I, 1-28.

- 12. Lakshaminarasimhan, P. & B.D. Sharma (1991), *Flora of Nashik District*. Series 3. Bot. Surv. Ind., Calcutta.
- 13. Lakshman, N. (1962), The applications of Raunkiaer's life form. *J. Indian Bot. Soc.* 41: 585-589.
- 14. Meher-Homji, V.M. (1977), History of dry deciduous forests of Western India, in 'Ecology and Archaeology of Western India', concept publishing company, New Delhi.
- 15. Naik, V.N. (1998), *Flora of Marathwada*, Vol. I & II. Amrut Prakashan, Aurangabad.
- 16. Nautiyal, M.C., B.P. Nautiyal and V. Prakash (2001), *Phenology and Life form pattern of an alpine pasture at Tungnath, Garhwal Himalaya. Mountain* Res. Dev., 21: 168-174.
- Oosting, H.J. (1956), The study of plant communities : An introduction to plant ecology. 2nd ed. W.H. Freeman and co., Sanfrancisco and London. p. 440.
- Patil, D.A. (1990), The Vegetation of the river Girna (Maharashtra). J. Econ. Tax. Bot. 14: 655-657.
- 19. Raunkiaer, C. (1934), *The life forms of plants and statistical plant geography*. Clarendon press. Oxford.
- Santapau, H. (1953), Contributions to the bibliography of Indian Botany. J. Bombay nat. Hist. Soc. 50: 520-548. 1952; 51: 205-259.

- Sarup, S. (1952), The Biological spectrum of the flora of Mt. Abu. Univ. Rajasthan Stub. *Biol. Sci.* 1.
- 22. Sharma, B. D. and Balakrishnan, N. P. (1993), *Flora of India Vol. 2 (Papavaraceae – Caryophyllaceae)*, Botanical Survey of India, Calcutta.
- Sharma, B. D. and Sanjappa, M. (1993), Flora of India Vol. 3 (Portulacaceae – Ixonanthaceae), Botanical Survey of India, Calcutta,
- 24. Sharma, B. D., S. Karthikeyan and N. P. Singh (1996), *Flora of Maharashtra State. Monocotyledones.* B.S.I. Fl. India, Ser.2. Calcutta.
- 25. Sharma J, Raina AK & Sharma S. (2014), *Life* form classification and biological spectrum of Lamberi Forest range, Rajouri, J & K, India. International Journal of Current Microbiology and Applied Sciences 3(11): 234–239,
- Singh, N.P. & Karthikeyan, S. (2000), Flora of Maharashtra State - Dicotyledons. Vol. I, Flora of India series 2, Bot. Surv. India, Pune.
- Singh, N.P., P. Lakshminarasimhan., S. Karthikeyan & P.V. Prasanna (2001). Flora of Maharashtra State Dicotyledons. Vol II, Bot. Surv. Ind.

How to cite this article:

D.G. Jadhav. (2020). Biological spectrum with some other ecological attributes of the flora and vegetation of the Salher fort of Maharashtra, India. Int. J. Adv. Res. Biol. Sci. 7(4): 146-155. DOI: http://dx.doi.org/10.22192/ijarbs.2020.07.04.016